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Laser flash photolysis (LFP) has engendered a renaissanc

in the study of alkyl-substituted carberfedVe have focused

on rearrangements of alkylhalocarbenes, where singlet ground

states simplify the products and kinetic analya#.Of particular
interest is cyclobutylfluorocarbené)( where 1,2-C and 1,2-H
rearrangements are competitive, respectively affording cyclo-
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tane elution) and characterized by NMR and UV spectrosédpy.
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Treatment of 8 with n-BuyNTF~ afforded a complex
decomposition mixture rather th&n The latter diazirine could
be obtained, however, from a “modified” Graham oxidation of
7 (30—35 °C), in which the aqueous NaOCI oxidant was

NH.HCI

cl._N
: CNH, : ><'E

7 8

Saturated with KF and the DMSO reaction medium was “loaded”

with 0.77 M LiF? This reaction afforded a variable mixture
(ranging from 9:1 to 2:1) o8 and3 in 50% overall yield, which
was separated by 3-fold repetitive chromatography on silica gel
with pentane®

pentenyl- and methylenecyclobutane products in a ratio of 3.4:1  Product Studies. Photolysis of diazirine3 at 25°C gave

and in>90% yield (eq 1f2P LFP afforded the absolute rate
constantsk. = 1.8 x 10° s andky = 5.3 x 10° s™* for these
processedP
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The present investigation began with a seemingly simple
inquiry: how would benzannelation dfaffect the competitive
rearrangements, noting as well that benzocyclobutenylfluoro-
carbene?) has two available distinct 1,2-C migrations @¢
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Thus, carben@ could undergo a “phenyl!” 1,2-C shift (bond a)
to 4, a “benzyl” 1,2-C shift (bond b) t&, or a 1,2-H shift tdb.
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(1)

fluoroindenest and5 in >90% yield and in a ratio of 95.3:4.7
as determined by capillary GC on a 30 m Cp-sil 5 CB or HP-1
column. Equal GC response factors were assumed famd

5. The 1,2-H shift produc6t appeared to be absent. The
structure of4 was verified by GC-MS, NMR, and comparison
to an authentic sampie synthesized by the conversion of
1-indanone to 1,1-difluoroindan with diethylaminosulfur tri-
fluoride (DAST) ! followed by HF elimination over alumint.
The assignment d is more tentative, however, and rests on a
GC-MS parent ion and a vinyl-H NMR absorption @t6.10.

Photolysis of diazirine in the presence of tetramethyleth-
ylene afforded the expected carbene trapping prodyct
characterized by NMR and high-resolution MS. A correlation
of the product ratio9/4 [Add/Re] vs the concentration of
tetramethylethylene wdmear (Supporting Information, Figure
S-1), indicating tha#t was derived very largely from carbene
2; excited diazirine 3 was not significantly
involvedla¢.2a1314 The yield of5, however, wasndependent
of [tetramethylethylene] from 0.24 to 3.6 M olefin, suggesting
that the 4-5% yield of5 is most likely derived from excite@

In the event, 1,2-H migration is suppressed and the residualand not from carbeng.15

rearrangement is strongly dominated by the “phenyl” 1,2-C
process, a specificity that we attribute to mediation by the phenyl
ot orbitals on the basis of ab initio calculations.

Diazirines. 1-Cyanobenzocyclobutehtwas converted to
amidine7 in 70% yield by reaction with HCI/EtOH to yield
the imidate salt, followed by ammonolysis (NWHtOH)S
Benzocyclobutenylchlorodiazirin@)was obtained in 50% yield
by oxidatiorf of 7 with 12% aqueous NaOCI, saturated with
NaCl, in a LiICHDMSO/pentane mixture at 385 °C. The
diazirine was purified by chromatography on silica gel (pen-

Thermolyses o83 at 100°C (48 h) and 138C (36 h) gave
4 and5 in distributions of 98.1:1.9 and 96.8:3.2, respectively,
somewhat more specific results than the photolytic distribution
(95.3:4.7). The al/b specificity of the 1,2-C migrations of
carbene? therefore exceeds 20n, 25 °C) and is as high as
51.6 at 100°C. Note that we implicitly assume that both
and5 arise only from carben2 in thermal decompositions of

w

Kinetics. The absolute rate constant for the rearrangement
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of carbene2 to 3-fluoroindene 4) was determined by LF® two transition structure&5 and 16 corresponding to the a and
using the pyridine ylide methodolod$1” LFP at 351 nm and b 1,2-shift processes were located and subjected to similar
24 °C of a pentane solution of diazirir (Asss = 0.8) in the analyse$? In agreement with the experimental results, the
presence of pyridine afforded a strong absorption of ylidat phenyl shift transition structur&5 was found to be 4.9 kcal/
390 nm. A correlation of the apparent rate constants for ylide mol lower in energy than that for the benzyl shift structie
formation (4.84 x 10" to 1.01 x 10 s vs pyridine (ZPE-corrected MP2/6-31G*). The calculated activation ener-
concentration (6.£36 mM) was linear (5 points, = 0.999) gies relative to the lower energy conformer of fluorocarb2ne
with a slope of 1.8« 10° M~1s71, equivalent to the rate constant  (14) are 2.8 and 7.7 kcal/mol, respectivéfy.

for ylide formation from2 and pyridine, and §-intercept of

3.75x 10" s1 (see Supporting Information, Figure S-3). The e ¢

latter value can be equated with for 2 — 4, the process that AN A

destroys>95% of the carbene in the absence of pyridine. =
The 2 — 4 rearrangement is thus 21 times faster (42 times /‘ ‘\

faster on a per bond basis) than the rearrangemerit tof 186K 1434

1-fluorocyclopentenekfe = 1.8 x 1(f s~ 1)2aband 71 times faster 14 15 16

than the H shift ofl to fluoromethylenecyclobutane, suggesting
that 2 accesses a lower energy (C shift) pathway and a more
stabilized transition state. We propose that this pathway iS o een the carbene center and the reactiod%ikurthermore,
O e e ermalion can be | the caculted changes in charge disrbution s Strudre
P . develops from14 are consistent with our depiction of this

tnwgczrnotrg?t'tﬁgnsgkatltr;%iﬁdr’eg'r?agreg’ggtn:egfrraengen::ergo'srgem_"reaction as an electrophilic attack on benzene by the carbenic
9 (e.9.) cyclopropy carbon. For example, the net charge on the carbene center of

i - i 18 e o . ;
I(l)(;lelnzelt(l)t%l r?g&b;{g'eq_ﬂfinelegceang of(t;her:]rr]i?rga;n%(larg%nt' 2 is highly positive (-0.42) due to the inductive effect of the
: ) S€ processes ca nNClUge N f0rine atom. As the reaction progresses to the transition

c%/clppré).p?hnatlcf)ns t;ﬁcausebthe producgs ch’u'd.f.b% too “r}'g.r%structure, interaction with the system results in a reduction
strained, therefore the carbenes can be classified as "olied ¢ positive charge by 0.16 units t60.26. At the same time,

methylenes 2 the carbons and hydrogens of the benzene ring become more
positive, the greatest changes being associated with the carbons
2 4 ortho and para to the point of attack (e.g., the charge on C
d ﬁ <jj] becomes more positive changing fron®.020 to—0.008).

We conclude by noting that the selective rearrangement of
carbene? to 3-fluoroindene 4) is a representative rather than
o ) o ) an isolated reaction. Thus, the photogenerated acetoxycarbene

Ab initio calculations support our qualitative view of tRe  anglogue of rearranges to 3-acetoxyindenesi89% yield with
— 4 rearrangement. Two low-energy conformations of the ke= 8.5 x 10P s~ at 25°C 25 whereas the thermally generated

singlet fluorocarben@ were located and subjected to complete (78 °C) chlorocarbene analogue affords a 92:7:1 distribution

geometry optimizations and normal mode analysis at the HF/ f the chloro analogues @ 5, and6, respectively?® Details
6-31G* level of theory?! Geometry optimizations were carried o these reactions will appear in due course.

out at the MP2/6-31G* level and led to an energy difference of
1.2 kcal/mol between the conformerséfter correction using
HF calculated zero-point energy (ZPE) differences. Next, the

The geometry of structurd6 is consistent with typical
carbene rearrangement transition structures having a long bond
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